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Embedding ¢ -Cubes in
Low Dimensional Schatten Classes

J. BASTERO, A. PENA AND G. SCHECHTMAN

2 .
We prove that for some o = a(e) > 0, the £50" -cube (1 + ¢)-embeds in the
50
Schatten class Cg, for every l-symmetric n-dimensional normed space F.

This paper deals with an instance of the general problem of Lipschitz embeddings
of finite metric spaces in low dimensional normed spaces. We begin by recalling
some definitions. Let (M,d) be a finite metric space and (E, | - ||) a finite di-
mensional real normed space. Given ¢ > 0, we say that the metric space (M, d)
(1 + £)-embeds into (E, || -||) if there is a one-to-one map f from M into E such
that

(L —e)d(z,y) < ||If(z) = f)I < (1 +&)d(z,y)

for all .y € M.

We report here some progress on the following problem ([B-B-K] and [B-BJ):
(Giiven a finite dimensional normed space E, what is the biggest n such that the
¢ -cube is (1 + ¢)-embedded in E.

The £}-cubes were introduced in [B-M-W] where some embedding relations
among the different £2-cubes are given. The ¢ -cube is the metric space ({—1,1}",
dso) where do (¢,€") = maxi<i<n|e; — €}, for any pair of elements £, in {—1, 1}".

In [B-B-K] the following result is proved:

“There exists a numerical constant €' > 0 such that the ¢ -cube is
(1 + £) embedded in any finite dimensional 1-subsymmetric space £, provided
that dim E > $n " (the result is the best possible, asymptotically in 7).

Some extensions of this result appear in [B-B], where sharp estimates are
given for the case of the 1-unconditional space £;(£7") 1 < p,q < oo.
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In this paper we will study (1+¢) embeddings of the ¢72 -cube in the unitary
ideal C3.

We are going to recall some definitions and introduce the necessary notations.
Let E be a n-dimensional real normed space with a 1-symmetric basis {e;}. We
denote A(k —sz 1€lle, 1<k <n.

Let L‘( R™) be the space of all linear opcrators on R™. C”‘ is the space L(R™)
endowed with the norm || T|jcr = || D2 si(u)e;|| g, for T € uhom {s;(u)} are

defined as the singular values of T', that is, the eigenvalues of VT*T. Obviously,
(CE: |l - llep) is a unitary ideal. The most important examples of unitary ideals
are the ideals C} induced by £, 1 < p < oo, the so-called Schatten classes,
which can be Vl(‘WCd as the non-commutative version of €. It is well known that

[ < llen coincides with the operator norm, denoted by || - |lo, || - ]CY., with the

Hilbert-Schmidt norm and | - llop with the trace class norm (see [G-K] for further
information about Schatten classes).
We will denote by () the Euclidean scalar product in R™, by || - |2 the

Euclidean norm and by S™~! the unit sphere. If X is a subspace of a Hilbert
space H, we denote by Px the orthogonal projection onto X. It is well known
that [|[Px|[lcz = A(dim X). Given two subspaces X,Y of a Hilbert space H and
0 <e <1 wesay that X and Y are e-orthogonal if |(z,y)| < e||z||||y|, for all z € X
and for all y € Y.

The Grassman manifolds G, , 1 < k < n, consists of all k-dimensional sub-
spaces of R™, with the metric being the Hausdorff distance between the unit balls
of the two subspaces. Let P, . be the Haar measure on G,, 1, the only normalized
measure which is invariant under the action of the orthogonal group O(n).

The theorem we are going to prove here is the following:

Theorem 1. Given 0 < € < 1, there exits a constant C(g) > 0 such that for all
f\T ‘-Idtf&ﬁ'iﬂg log N < C( yn? we can find N points Ty, ..., , I in C%, satisfying
£ <|T; - Tl|(,, <1, for alli # j.

We are going to look for the points 7}’s in the set of orthogonal projec-
tions associated with a family of k-dimensional subspaces of R" (for a suitable k),
having large subspaces which are pairwise e-orthogonal. We introduce some more
notations.

Let k € N and 0 < & < 1 such that 2k < n. Let A(e, k) be the set of all the
couples (X1, X2) € Gy i X Gy i, for which there exist ¥; C X;, i = 1, 2, satisfying;

i) dim Y; > (1 —¢)k
ii) X and Y5 are e-orthogonal
iii) X5 and ¥} are e-orthogonal.
We set C(e, k) as the set of all (X}, X5) € G, 1 % Gy, such that,

Px By,

/\{2!..) A(2k)

18 <

"
Cg

The proof of the theorem is based on the following two facts:
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Fact 1. If 0 < £ < 1/4 and 2k < n, then A(e, k) C C(s, k).
Fact 2. There exits an absolute constant C' > 0 such that if 0 < & < 1/4 and if
k= [Ce®n] > 1 then

Pr X Ppp(Ale, k) > 1 — 2exp (—9(e)n?)

where 1)(g) = (15; . (['] denotes the integer part.)

Proof of Theorem 1  Let N be a natural number, k and ¢ as in fact 2. Consider
the set

A= ‘{{Xl s ‘XN) = Gn:.’i‘ Koo X Gn.k;
Py,

<”/\(2k:)7\(2k) <1, 1<4,5 < N,i#j}.

1— 8

The problem is to find the largest NV such that A # ). For that, we compute the
probability of A€ (the complementary set). Since

P‘Ii..}.‘ 7 T i PTI-A'(A(:) S Pu,,k X HDN!'L.{ U A:’f}
i,5€{1,...,N},ij

where A, ; = { )EGuirxGup1—8e < H /\(2]‘ %H(; < 1} we obtain

; N .
P“J‘. Koo X Pn.‘r(At) S ( )]}D”:}‘- X P,,J; (C(E,k)()

2

< (g) 2exp (—1p(e)n?) < 1

whenever
log N < %1[;(5)?1.2.
N
Next we are going to prove the two facts. We begin with some preparatory
lemmas. The first one is most certainly known but we include an elementary proof
for sake of completeness.

Lemma 1. Let P and () be two orthogonal projections on a Hilbert space H, then
1P =@z < 1.

Proof: Let z € H, with ||z|| = 1. Let £ = span{Pz,Qz}, (dim E < 2). If
we denote by Rz the orthogonal projection of z onto E and by P’ and @' the
orthogonal projection from E onto span{Pz} and onto span{Quz}, respectively, it
is easy to see that P'(Rz) = Pz and @'(Rz) = Qz. Since it is enough to prove
that ||Pz — Qz| < ||Rz|, we may assume without loss of generality that H is R?
with the euclidean norm.
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Let (z,y) € R?, P(z,y) = (2,0) and Q(z,y) = (azx + by)(a,b), with a® +b* =
1, (as we may assume without loss of generality).
(P—Q)(z,y)=((1- a*)x — aby, —abzr — bgy)

and thus

i1

(P - ())(}y)Hj —(1—a?)2? + 022 <a? 42 = H(zu)“j :
O

Lemma 2. Let0 < e < 11 and let X and Y two s-orthogonal subspaces of a Hilbert
space H. Then
i) 1Px Pyllem <e
ii) If H=X @Y and X' is the orthogonal complement of X then
[Py — Pxt|lcmy < 4e.

Proof: i) Let z € H and let Py (z) = y. Then,

|1Px Py (2)||” = (Px(y), Px (1)) = (Px(),¥)
Px (m)||llyll < || Px Py (2)| |21 -

IA

Hence, [|Px Py | ccmy < €.
ii) First we should notice that the e-orthogonality implies that X +Y = H
is a direct sum. Let z =x+y € H, v € X, y € Y with ||z|| < 1. Then, by i,

1

IV

1Pxzll = [l2ll - | Pxyll = llzll — &yl
> o]l - —eflafl > (1 - &)lfef —¢ .

£

Thus ||z|| (and similarly [y]]) < 12 < 2. Now,

|Py — Px.(2)|| = || Py (2) +y — Px Xl
<[Py (@)|| + |l = Pxr )|
=[Py ()] + [ Px®)|
< de.
O

Proof of Fact 1  Let (X7, X») be a couple in A(e, k) and let ¥; € X;, i = 1,2 be
the corresponding subspaces. Since Px, — Py, = (Px, — Px,)Px, +x,, we have:

I1Px, = Px,llex < ||Px, — Px,

C(H);\(dim (X] o= /Y-_))) < )\(2!}) %

To obtain the other inequality we use lemma 1,

H‘P-\'i ﬁ P\-:H(}l 2 H(P\L - z\'z)(P\] - j)}'z)H(-;}_
Z [Py, + Prolicg — 1Px: Prilley — 1Px, P lleg -
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Since Px, Py, = Px, Py, Px, we have that || Px, Py, ”C';Z- < eA(k) and in a similar
way we have || Px, Py, [lcp < eA(k).

We still need to get a lower estimate for || Py, + Py,|lcz. In order to obtain
it, we compare with [Py, + Py [lcp where Y7t is the orthogonal complement of
Y1 in Y7 @& Y5, Then

ez = 1P + Prolleg | < 1Py, = Py

|HP)"1 + Py, on < 4eA(2k) .

The last inequality follows from Lemma 2.1 and the fact that the rank of Py, — P}J.i
is smaller than or equal to 2k. Since Py, + P i, = Py, HPLS Py +v, and

| Py, + ]’}-1, H(-"E = A(dim Y] + dim Y3) > /\(2([(1 —e)k] + 1}) .
we get that
A2([(1 = £)k] + 1)) — 62A(2K) < [P, — Px,llop < A(2K) -

Finally, a simple and well known averaging argument shows that for F, a 1-
symmetric Banach space, we have nA(m) < mA(n) if n,m € N and n < m.
This concludes the proof of this fact. O
Proof of Fact 2 By using a symmetrization argument and Fubini’s theorem it is
enough to show that for any fixed X € Gy, &, Pox(B(X,2) > 1 — exp{—1(e)n?},
where B(X,e) denotes the set of all Y € G, 1 for which we can find a subspace
Y, C VY, with dim Y] > (1 — &)k and Y; e-orthogonal to X.

In order to do that we are going to estimate the probability of the comple-
mentary set B(X, )¢, Note that if ¥ € B(X,£)° and A C YV is any orthonormal
set of cardinality smaller than [zk] then there exist a y € Y N A" and an 2 € X
with ||y|| = ||z]| = 1 and |(x,y}| > . Therefore

B(X,e)* C{Y € GnpFpn e Y NS Lz € X NS L [(z1,1)| > ¢,
Jye € Y N[pn] NS™ Has e X NS L (g, y2)] > €,

Syifg‘.] eYnNy,..., Ylek] .1J'L N Sn_l..?.’j_;g.} e Xns81,

& ek)s Yier)| > €}
and, for some orthonormal sets A; with card(A4;) =4,1=0,...,[k],

PH.A‘(B(_:{-E)C) g

[ek]

HH”,,_,,(H;/; EYNA- NS Lo e XnS™ L a,y)| >e /A1 CY) . (1)
=1

Here ]F’”,k( . / -) denotes the conditional probability.
In the following lemma we estimate the individual terms in the product above.
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Lemma 3. Let A C R™ be an orthonormal set, with card(A) = [. Then

Pri({Y € GuisIyeYNAT NS Iz e X NS (z,9)| > €} JACY)

(O fim(25)

Proof: First note that the invariance of the Haar measure and the fact that the
lemma is supposed to hold for all k-dimensional subspace, X, of R™ imply that we

may assume that A consists of {e,—;41,...,en}, the last I canonical basis vectors
in R™. Next note that Pmk( - / {en—i+1,---s€n} C Y) induces a measure, [, on
the set of all k — I subspaces of R* ! = span{ey, ..., e,_;} by the formula

,Ll(y) - Prl,k'({y E G'n,k; fP[el‘...,e,,_i]Y € y}/ {eu—H—la R ,Bn} C Y) .

1 is clearly invariant under the action of the orthogonal group of R" ! = [ey,.. .,
en—i] and thus is equal to Pp_p ;.
Let n be an §-net in X N.S™~1, with card(n;) < (%)" Then

{YeGupyeY NS 3z e X NS, [(z,9)| >}

s £
- U {Y L= Gn—!’,k—l;ay € ¥ NSt ! j=l<$:y>‘ > 5} :
TET

(We regard R™~! as a subspace of R™ spanned by ej,...,en_1 50 Y € Gp_y o is
regarded also as a subspace of R™.) Hence

Proth—t({Y € Groth—; €Y NS 1 3z € X N S™ L, [(z,y)| > ¢€})

AN
< (—) sup Pppj1({Y € Gnotp—1;3y € Y NS 71 [{z, )| > E}) - (2)
& reSn—1 2

The sup is clearly attained for = € [ey,...,e,—]. Fixing a subspace Z € G k—1,
an § net in ZNS"! and a zp € ZNS™~" and denoting by Po,_, the Haar measure
on the orthogonal group O,_;, we get similarly that

= &
Pnfl,kwl({y (= Gn—i,k—l; 3'9' ey nsm ! 1: '(l,yﬂ = 5})

=Po,,_,({U € O(n—1);3z € 2N 5", |(Uz,0)| > £})

k-1
<(2)  Pouy(eOm-1lwz02 > 3) ®

The last probability is twice the measure of an appropriate cap in S?~!~1 and thus
v P -

is dominated by /7 exp (7%) (see [M-S]). Combining this with (2) and

(3) we get the lemma. O
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We return now to the proof of Fact 2. By (1) and Lemma 3,

P (BX,0) <[ (g)k @H V=
< exp ((%Ingg — W) [Sk])

< exp(—Ce®n)

as long as k < 6e3n. O

Note In the particular case of E' = £}, we could obtain a better estimation for
C(e). The method we can use in that situation is different. We could attack the
problem by looking for the points in the orbit of one particular element under the
action of a group of isometries acting on CJ;.
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